The Markov Chain Monte Carlo Approach to Importance Sampling in Stochastic Programming
نویسنده
چکیده
Stochastic programming models are large-scale optimization problems that are used to facilitate decision-making under uncertainty. Optimization algorithms for such problems need to evaluate the expected future costs of current decisions, often referred to as the recourse function. In practice, this calculation is computationally difficult as it involves the evaluation of a multidimensional integral whose integrand is an optimization problem. Accordingly, the recourse function is estimated using quadrature rules or Monte Carlo methods. Although Monte Carlo methods present numerous computational benefits over quadrature rules, they require a large number of samples to produce accurate results when they are embedded in an optimization algorithm. We present an importance sampling framework for multistage stochastic programming that can produce accurate estimates of the recourse function using a fixed number of samples. Our framework uses Markov Chain Monte Carlo and Kernel Density Estimation algorithms to create a non-parametric importance sampling distribution that can form lower variance estimates of the recourse function. We demonstrate the increased accuracy and efficiency of our approach using numerical experiments in which we solve variants of the Newsvendor problem. Our results show that even a simple implementation of our framework produces highly accurate estimates of the optimal solution and optimal cost for stochastic programming models, especially those with increased variance, multimodal or rare-event distributions. Thesis Supervisor: Mort Webster Title: Assistant Professor of Engineering Systems
منابع مشابه
A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind
In the present work, a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind. The solution of the integral equation is described by the Neumann series expansion. Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method. An algorithm is proposed to sim...
متن کاملImportance Sampling in Stochastic Programming: A Markov Chain Monte Carlo Approach
Stochastic programming models are large-scale optimization problems that are used to facilitate decisionmaking under uncertainty. Optimization algorithms for such problems need to evaluate the expected future costs of current decisions, often referred to as the recourse function. In practice, this calculation is computationally difficult as it requires the evaluation of a multidimensional integ...
متن کاملB Lock Updating in Constrained M Arkov Chain
Markov chain Monte Carlo methods are widely used to study highly structured stochastic systems. However when the system is subject to constraints, it is difficult to find irreducible proposal distributions. We suggest a “block-wise” approach for constrained sampling and optimisation.
متن کاملA Sequential Monte Carlo Approach to Computing Tail Probabilities in Stochastic Models
Sequential Monte Carlo methods which involve sequential importance sampling and resampling are shown to provide a versatile approach to computing probabilities of rare events. By making use of martingale representations of the sequential Monte Carlo estimators, we show how resampling weights can be chosen to yield logarithmically efficient Monte Carlo estimates of large deviation probabilities ...
متن کاملStochastic image denoising based on Markov-chain Monte Carlo sampling
A novel stochastic approach based on Markov-Chain Monte Carlo sampling is investigated for the purpose of image denoising. The additive image denoising problem is formulated as a Bayesian least squares problem, where the goal is to estimate the denoised image given the noisy image as the measurement and an estimated posterior. The posterior is estimated using a nonparametric importance-weighted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012